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Abstract
Stellar classification is a critical task in astro-
physics, involving the categorization of stars based
on a variety of properties. With the advent of large-
scale astronomical datasets, there is a growing need
for automated systems to efficiently classify stars.
This paper explores the use of machine learning
models for classifying stars into spectral classes
based on their observed features. We focused on
two models: a Multi-Layer Perceptron (MLP) and a
K-Nearest Neighbor (KNN) classifier, both trained
on the Simbad database. We conducted extensive
feature selection to identify the most relevant stel-
lar properties for classification, including B-V, tem-
perature, and luminosity. Our results show that the
KNN model outperforms the MLP in terms of ac-
curacy, but both have the potential to be reliable
astronomical tools.

1 Introduction
1.1 Background Information
Stars are generally categorized based on their temperature
and their spectral characteristics. The most widely used sys-
tem for classifying stars is the Harvard spectral classification,
which divides stars into seven main classes: O, B, A, F, G, K,
and M. These classes are arranged in order of decreasing tem-
perature, with O-type stars being the hottest and M-type stars
being the coolest. Each of these main classes is further sub-
divided into 9 subclasses (e.g., B0, B1, B2...), which provide
more specific information about the star’s characteristics.

Most stars, however, do not fall randomly across the classi-
fication spectrum but instead primarily reside along a region
known as the ”main sequence” of the Hertzsprung-Russell
(H-R) diagram, which is a plot of luminosity versus tempera-
ture. This main sequence represents a stable phase in a star’s
lifecycle, where stars spend the majority of their time fusing
hydrogen into helium in their cores. The position of a star on
the main sequence is determined by its mass, with more mas-
sive stars being hotter and more luminous, found toward the
upper-left of the diagram, while less massive stars are cooler
and less luminous, located toward the lower-right. As seen in
figure 1, this main sequence forms a diagonal band stretch-
ing from the upper-left to the lower-right of the H-R diagram,

which is a key feature of stellar evolution. Stars that are not
on the main sequence are in different stages of their lifecycle,
such as red giants or white dwarfs.

Figure 1: Spectal Class Graph

The classification system is based not only on the temper-
ature but also on the absorption lines in the star’s spectrum,
which are caused by the elements and molecules present in
the star’s atmosphere. As a result, stars within the same class
tend to exhibit similar colors, with hotter stars appearing blue
and cooler ones appearing red. This classification system has
been fundamental in stellar astronomy, allowing scientists to
understand the physical properties and evolution of stars. Al-
though there are several other factors, temperature is the pri-
mary classification metric.

1.2 Main Goal of the Project
The primary goal of this project was to explore whether the
classification of stars can be determined en masse by a ma-
chine learning model without individual evaluation. This is
important because of the sheer number of stars that are ob-
served, recorded, and studied by astronomers. By building a
model that can accurately and automatically classify stars, we



can streamline the process of stellar classification, especially
for large-scale datasets where spectral class is unrecorded or
undetermined. All of the stellar datasets that our team looked
into had data points with missing features. This model could
mean that spectral class won’t be one of them.

2 Methods

2.1 Data Source
We used the Simbad (Set of Identifications, Measurements,
and Bibliography for Astronomical Data) dataset for our
project. The data in the Simbad database comes from a vari-
ety of astronomical surveys, observations, and scientific liter-
ature. The data is collected, curated, and organized by the
Centre de Données astronomiques de Strasbourg (CDS), a
French institution that provides public access to a variety of
astronomical resources.

This dataset has millions of total data entries. Approxi-
mately 50,000 of the entries are stars labeled with the spec-
tral classification; approximately 12,000 are unlabeled stars.
The set has both spectral data for and the actual classification
of each star. It also includes other key stellar properties such
as distance, luminosity, and motion. Researchers worldwide
use Simbad as a reliable source of astronomical information.
[Database, 2024]

We considered other datasets, but decided against them for
the sake of retrieval time. The Gaia dataset has approximately
1 billion total instances. Although more data is usually better,
pulling the data from the database would have taken approxi-
mately 100 hours of computing time. The SDSS (Sloan Digi-
tal Sky Survey) dataset presented a similar problem: it would
have taken about 400 hours to pull all of the data. Pulling
only part of the data in either case would have taken less time
and given us enough to work with, but it would have been
difficult to guarantee that the subset was randomly selected.
Additionally, the Simbad dataset had the aforementioned key
stellar properties, as well as features and organization better
suited to our task.

Using multiple datasets was considered, but the idea was
rejected because of the potential for variance between astro-
nomical instruments.

2.2 Data Preparation and Feature Selection
Features related to spectral measurements and classification
are most relevant to our research question. We examined the
list manually and threw out irrelevant features. This left us
with 9 features: B, V, B-V, Temperature, radius, luminos-
ity, metallicity, surface gravity, and mass. To eliminate some
members of this subset, we trained a Decision Tree on the
data and kept only the most significant features as determined
by prominence in the tree. One of these features was B-V.

B-V, was manufactured by us from two of the existing fea-
tures. As the moniker suggests, it is obtained by subtracting
the Violet value from the Blue value. This combination pro-
duces a feature with an approximation of the spectral curve of
the star; this combined feature is more powerful than either of
the features on their own.

2.3 Model selection
As stated, we used a Decision Tree model to reduce the num-
ber of features to work with. For classification, we chose to
use an MLP (Multi-Layer Perceptron) and a KNN (K-Nearest
Neighbor) classifier. We chose the MLP because it is gener-
ally good at learning tasks. The downside to this model is
that, due to the nature of the model, it will not yield any in-
sights into which features were the most important. We chose
to use it anyway; knowing the importance of each feature is
less critical because of the work of this nature that we did pre-
viously with the Decision Tree. We chose the KNN because
it fits our use case well. The KNN is particularly useful for
classifying data with blurred lines between groups. Because
stellar classification is based on multiple factors, our dataset
has this attribute. Additionally, stellar classification is based
on selection of clusters, and so is the KNN algorithm.

3 Initial Outcomes
3.1 MLP
We first trained our MLP model with the following param-
eters: 256 hidden nodes, ReLU as the activation function, a
learning rate of 0.005, a momentum value of 0.9, Nesterov’s
momentum set to false, 50 as the maximum number of iter-
ations with no hange, 2000 as the maximum iterations under
any circumstances, early stopping set to false, a validation
fraction value of 0.15, and with shuffle enabled. These pa-
rameters were chosen based on the known attributes of the
dataset and the results of a run with multiple default param-
eters. Figure 2 shows the loss curve for this model, and ta-
ble 1 shows the accuracy. Under these parameters, the MLP
ran until the maximum number of epochs without reaching
convergence. Additionally, the loss value never truly dipped
below a value of 1.0.

Figure 2: Initial MLP Loss Curve



Training Accuracy Test Accuracy Epochs to Converge
68.8% 67.3% 2000

Table 1: Initial MLP Accuracy

3.2 KNN
We first trained our KNN model with all default parameters,
including a k value of 5. Surprisingly, this produced favorable
results: specifically, a test accuracy of approximately 96%
(see table 2). Limited testing of different k values resulted in
a slightly increased accuracy when k is equal to 3.

Training Accuracy Test Accuracy k-value
98.1% 96.2% 5

Table 2: Final KNN Accuracy

4 Model and Feature Improvement
4.1 Measuring Improvement
Although training accuracy is an interesting metric, through-
out our model refinement process, we relied on testing accu-
racy as our primary indicator of the success of a model. Sec-
ondary factors included runtime, number of epoch until con-
version (in the case of the MLP), and graphs of loss curves
and classifications. The most significant and relevant graphs
and metrics are included in this report.

4.2 Changes to Parameters
The MLP parameters were studied through a series of training
runs of the model with various combinations. The most suc-
cessful of these combinations is described in section 5.1. We
ran a grid search to determine the most efficient KNN param-
eters for our purposes. The grid search took approximately 4
hours to run. The chosen parameters are detailed in section
5.2.

5 Final Results
5.1 MLP
Our final MLP used the following parameters: 4 layers of
hidden nodes distributed thus [256, 256, 128, 64], ReLU as
the activation function, a learning rate of 0.005, a momen-
tum value of 0.1, Nesterov’s momentum set to true, 50 as the
maximum number of iterations with no change, 5000 as the
maximum iterations under any circumstances, early stopping
set to false, a validation fraction value of 0.15, and with shuf-
fle enabled. These parameters were the result of many tests
of many different parameter combinations.

Figure 3 shows the loss curve for this model, and table 3
shows the accuracy. Under these parameters, the MLP con-
verged after just 499 epochs, a number well below that of our
initial MLP model. Additionally, the loss was significantly
lower; while previously it never dipped below 1, for this
model, it stayed below 0.5 after approximately 100 epochs
had taken place.

These results are accurate enough that this model would
be a useful and reliable tool for classifying stars into spectral
classes.

Training Accuracy Test Accuracy Epochs to Converge
96.0% 95.3% 499

Table 3: Final MLP Accuracy

Figure 3: Final MLP Loss Curve

5.2 KNN
Our grid search revealed a set of parameters that gives us ap-
proximately 99% accuracy on labeled data. This combination
of parameters included setting the algorithm to auto, setting
the leaf size to 10, using the manhattan method as the distance
metric, using 15 as the k number of neighbors, and using dis-
tance weighting. This level of accuracy means that the model
does exactly what we trained it to do, and it does so very well.

The KNN algorithm’s success could be due to its reliance
on distance-based metrics. The KNN uses similarities be-
tween data points to form classifications. Stars with similar
temperature and luminosity will likely be part of the same (or
a similar) spectral class.

Training Accuracy Test Accuracy k-value
100% 99.1% 5

Table 4: Final KNN Accuracy

Figure 4 shows a graph of the distribution of the labeled
data in the set. As you can see, the stars are distributed along
the main curve in the same way that spectral classes are ex-
pected to be distributed (compare figure 4 to figure 1).

Figure 5 is a graph of the KNN’s predictions on unlabeled
data. It is clearly consistent with the labeled data of the set
as shown in figure 4. Several classes seem to be underrep-
resented, but this is consistent with the data’s actual distri-
bution. The number of unlabeled instances in our set is far
smaller than the number of labeled instances, and the classes
with larger mass tend to be fewer in number in both our
dataset and in the real world.



Figure 4: Labeled Data Points

Figure 5: KNN Classification of Unlabeled Data



6 Discussion and Conclusion
6.1 Comparative Results
Although our final MLP model yields incredibly respectable
results, our final KNN model is superior. Our KNN model
was more accurate, as seen by the accuracy scores of each
model shown in the tables. Additionally, it took us longer to
train the MLP than the KNN. Granted, the grid search for the
KNN contributed to its accuracy, and we did not perform a
grid search on the MLP. Preliminary testing of such a method
indicated that the runtime of the grid search made it infeasible
for the scope of this project.

6.2 Implications
We consider our project to be a success. We trained 2 effec-
tive models to classify stars into their spectral classes. Both
models produced impressive accuracy. Predictions of our
KNN model on unlabeled data (figure 5) are consistent with
expected outcomes. Either of these models, but especially our
KNN model, could be used in real world situations to fill gaps
in astronomical databases.

The integration of machine learning models into auto-
mated astronomical pipelines is a natural next step. Currently,
several large-scale astronomical surveys use traditional data
analysis methods, which often require significant manual in-
tervention and human oversight. Our models, especially the
KNN classifier, could be integrated into these pipelines to
automatically classify stars and other astronomical objects
as data is collected. Such integration would provide near-
instantaneous classification results, enabling researchers to
quickly identify and prioritize interesting objects for further
study. This could lead to faster scientific discovery and the
efficient allocation of resources in observational astronomy.

7 Future Work
7.1 Further Exploration
A myriad of paths for further exploration of the topic could be
found by altering any of the decisions made by our team dur-
ing the planning and experimenting process. A notable option
is expanding the capability of the model to include classifica-
tion into the subclasses of the 7 spectral classes. There are
over 600 potential classes that a star can be ultimately cate-
gorized into. Training the model to handle all of these classes
would require a re-evaluation of which features to give the
model, at the very least. Given more time, a grid search could
be performed to optimize the features used to train as MLP
on this data.

Other machine learning algorithms could be explored to
solve this case. Existing literature indicates that Random For-
est models have been trained for this type of problem [Sharma
et al., 2019]. Additionally, we could look into using a Deci-
sion Tree model for the actual classification instead of just
feature reduction.

7.2 Real-World Application
Spectral class is an incredibly powerful feature to have in a
dataset because it combines several other aspects of the star
into one. It is necessary for any study with a scope limited to

fewer than all of the classes. It is standard for estimating the
age of a star.

In datasets with billions of stars, there are bound to be
missing values. If one of those missing values is spectral class
(as we saw often in our examination of astronomical datasets)
then an accurate classifier would allow anyone, regardless of
astronomical prowess, to fill in those missing values with con-
fidence in their veracity.
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